
REUSABLE PROBABILISTIC MODELS
FOR SCIENTIFIC DATA

Michael Turmon
19 May 2000

A. Introduction and Motivation

B. Language

C. Initial Applications

D. Spatiotemporal Extensions

Joint work with Vlad Gluzman and Eric Mjolsness
of the JPL Machine Learning Group, and
Lukman Ramsey of JPL and UCSD
Institute for Neural Computation

turmon@aig.jpl.nasa.gov
http://www-aig.jpl.nasa.gov/home/turmon/

✬ ✩

✫ ✪

APPLICATION NEEDS

Goal

Allow scientists to define and exchange statistical models for data
Model definition
Model interchange
Container to facilitate computation
Backed by computational engine(s)

Applications

Scientific problems in which observable variables relate to hidden
variables:

Remote sensing (find solar features: observables → labels)
Clustering (gene expression array analysis: next page)
Time series (HMMs for environmental time series)

Specifics

Ability to handle continuous variables

Support real-valued transformations

Restricted family of models is enough at first

Mostly bottom-up inference: not complex diagnostic setting

Model portability and re-use (including as subsystem)

✬ ✩

✫ ✪

A-1(2)

Gene Expression Array Modeling

Gene activity levels (here in yeast) are monitored through time

For each gene, a roughly 70-dimensional feature vector arises

Genes are compared by these activity patterns

(green: more expression; red: less expression. Data courtesy Stuart Kim, Stanford)

Genes are clustered hierarchically via a stochastic grammar

(the grammar has a Bayes network analog)

Fitted models represent potential genetic evolution patterns

Models are encoded in XML/Pleodata for inspection by biologists

t
i
m
e

|
|
V

gene ÐÐ>

priors on y,

labels removed

VIEWPOINT

Aspects of the problem

Primary: Develop the proper language
Declarative, not procedural
Based in neutral mathematical constructs

Develop means of interchange (intermediate formats for editing,
display, archiving, and computation)

Develop computational engines

Guiding formalisms

Bayes networks, of course

Parameterized stochastic grammars

Energy minimization

Related work: BUGS

Comes close to addressing these issues
We need a library
Prefer a purely declarative language

Related work: JavaBayes/XML-BIF

Applications require continuous variables
Require continuous functional transformations

✬ ✩

✫ ✪

A-2(3)

MODEL SPECIFICATION (I)

These decompositions have a natural parallel in Bayes net or
stochastic grammar formalism

Model list of labeled variables
Text label 〈L〉 is a means of external or internal reference
〈M〉 →〈L〉 = 〈V 〉; 〈L〉 = 〈V 〉; ...〈L〉 = 〈V 〉

Variable Constant, distribution or transformation
〈V 〉 →〈C〉|〈D〉|〈T 〉

Also, noncircular reference to a labeled variable
〈V 〉 →〈L〉

Distribution Familiar families parameterized by variables
〈D〉 →Normal(〈V 〉, 〈V 〉)
〈D〉 →Uniform(〈V 〉, 〈V 〉)
〈D〉 →Gamma(〈V 〉, 〈V 〉, 〈V 〉)
...

Also
〈D〉 →Discrete(〈C〉, 〈V 〉, 〈C〉, 〈V 〉, ...)
the probabilities are constants but the values are variables

Transformation Linear/nonlinear function of a variable
〈T 〉 →〈C〉 ∗ 〈NL〉(〈C〉 ∗ 〈V 〉)

Nonlinearity surrounded by nonsingular linear transforms

The nonlinearity acts coordinatewise:
〈NL〉 →[〈NL1〉(·), ...〈NL1〉(·)]
〈NL1〉 → exp | log |(·)p

✬ ✩

✫ ✪

B-1(4)

EXPRESSIVE POWER

Labels allow construction of DAGs and cyclic graphs.

Aggregation and decomposition of vectors is not allowed.

Random vectors

x = Normal
([0
0

]
,

[
2 1
1 4

])

Composition

y = exp(Normal(Normal(0, 1), 4))

Mixtures

y = Discrete(0.1,Normal(0, 1), 0.9,Normal(2, 4))

DAGs

z0 = Uniform(0, 1);
z1 = Normal(z0, 1);
z2 = exp(Normal(z0, 4));
z = Normal(z1, z2);

✍✌✎�
z

✍✌✎�
z1 ✍✌✎�

z2

✍✌✎�
z0

�
�

��✠

❅
❅

❅❅❘

❅
❅

❅❅❘

�
�

��✠

✬ ✩

✫ ✪

B-2(5)

LANGUAGE SPECIFICATION

Many substrates are possible
support for compositional structure is key

We have chosen XML

Subset of SGML, instantiated for a given application

Looks like another SGML relative, HTML

Content indicated by <tag> data </tag> constructs, which
may be nested and repeated

Why XML?

• Largely self-explaining document

• Browsers and editors exist (e.g., JUMBO, MSIE5)
Style sheets allow display in various formats

• Parsers exist in many languages (C, Java, Python, etc.)

• Support for external resources (e.g., data)

• Evolving support for mathematical expressions (MathML)

Encoding

Simple translation to XML

DTD reflects breakdown seen above

✬ ✩

✫ ✪

B-3(6)

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE model [

<!-- Model: list of named variables -->

<!ELEMENT model (variable+)>

<!ATTLIST model name ID #REQUIRED>

<!-- Variable: distribution and optional transform -->

<!ELEMENT variable (dist, transform?)>

<!ATTLIST variable name ID #REQUIRED>

<!-- Transform stuff -->

<!ELEMENT transform (lin_trans?, lin_trans?, xform)>

<!ELEMENT lin_trans (slope, offset?)>

<!ELEMENT slope (#PCDATA)>

<!ELEMENT offset (#PCDATA)> <!-- optional affine part -->

<!ELEMENT xform (from_coord, param)>

<!ELEMENT from_coord (#PCDATA)>

<!ELEMENT param (#PCDATA)> <!-- which nonlinearity -->

<!-- Distribution stuff -->

<!ELEMENT dist (dim,((val,prob)+ | (mean,covar) | ...))>

<!ATTLIST dist type (#PCDATA) #REQUIRED>

<!ELEMENT dim (#PCDATA)>

<!ELEMENT val ((variable?) | (#PCDATA)> <!-- discrete -->

<!ELEMENT prob (#PCDATA)>

<!ELEMENT mean (variable | (#PCDATA))> <!-- normal -->

<!ELEMENT covar (variable | (#PCDATA))>

]>

Probability Model XML Document Type Definition

(Some optional attributes have been deleted for clarity)

IMPLEMENTATION

Two operators: Draw and Prob
Both defined only on labeled variables in the model
Operate by recursive invocation on dependent structures

• Draw produces a sample of the variable
(conditioning not allowed)

Works for any DAG

• Prob finds the probability of the variable assuming a value
(density WRT the appropriate reference measure)

Works for trees but not DAGs

Supports discrete but not continuous integration
Discrete: needed for finite mixtures
Continuous: needed to find probabilities like N(N(0, 1), 2)

Summation also done for (finitely) many:one transformations

• Environment

Library is in ANSI C
Reads an XML stream with the expat parser

✬ ✩

✫ ✪

B-4(7)

SoHO/MDI Sunspot Identification

Full-disk images are taken in several

modalities by the MDI imager aboard

the SoHO satellite

Scientists build models by selecting

regions of interest and fitting mixtures

to the resulting observables

(red: quiet; green: faculae; blue: spot)

These models, encoded in XML,

are the basis for statistically

based region identification

Our region-labeling software

works by interpreting these

model files

Scientists also use model files

for documentary purposes and

transmission to collaborators

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

-1234567.890

these Helvetica numerals

force the correct characters

to be loaded into the PS file

so that the Matlab graphics

including them will print correctly.

Picard Active Region Identification

As with SoHO/MDI, full-disk

images will be taken aboard

the CNES Picard satellite

Picard will study temporal changes in solar diameter; region-determination

affects the diameter measurement. To maintain the long-term calibration of the

Picard measurement, having a definitive region model is essential.

-4 -3 -2 -1 0 1 2 3
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

12
3

4

5

6

Active region models are determined

in a similar way; below is a first-order

active region model

Such models are one way

to build cross-application

analysis mechanisms.

They also allow the analysis

community to reach consensus

about a given model.

ENVIRONMENTAL TIME SERIES

Object trajectories
Sea-level pressure over the Pacific (δt = 48 hrs.)
Cyclone center shown by white cross
Right: trajectories from a series of (quantized) observations
Work with Padhraic Smyth, UC Irvine

Other examples: sunspot motion, microblock motion from GPS

Modeling trajectories
State-based motion models
Include influence of exogenous inputs and observable covariates
Discover motion clusters by uncovering hidden class C

Examples
Generalizations of the Kalman filter as Bayes nets with state ut

✍✌✎�
u1 ✍✌✎�

u2 ✍✌✎�
u3 	 	 	 ✍✌✎�

uT✲ ✲ ✲

✍✌✎�
C✟✟✟✟✟✟✟✟✙

�
�

��✠ ❄

	 	 	

✍✌✎�
z1 ✍✌✎�

z2 ✍✌✎�
z3 	 	 	 ✍✌✎�

zT

❄ ❄ ❄

	 	 	
❄ ✍✌✎�

z1 ✍✌✎�
z2 ✍✌✎�

z3 	 	 	 ✍✌✎�
zT

✍✌✎�
u1 ✍✌✎�

u2 ✍✌✎�
u3 	 	 	 ✍✌✎�

uT✲ ✲ ✲

✍✌✎�
r1 ✍✌✎�

r2 ✍✌✎�
r3 	 	 	 ✍✌✎�

rT

❄ ❄ ❄
	 	 	

❄

❄ ❄ ❄
	 	 	

❄

mixed dynamical model model with exogenous inputs rt

⇒ need for spatiotemporal models

✬ ✩

✫ ✪

B-5(8)

SPATIO-TEMPORAL MODELING (I)

Base concept of random vector is inadequate
Capture concept of variables on structured index sets

Domain : An index set

• Principal Examples:
Any finite set
Zn, the first n integers (e.g., time series)
Z/Zn, the cyclic version of Zn

R, the real numbers

Domains supporting translation play a special role

• Operators on domains give means of combination
∪, the union
×, the cross-product
Allows formation of domains for images, etc.

• Stencil is a Domain identifying a local neighborhood
{−k, ..., −2, −1}, for a k-order autoregressive model
{(−1, 0), (1, 0), (0, −1), (0, 1)}, for a first-order MRF

−k

 −2 −1 ✉ (−1,0)

(0,−1)

(0, 1)

(1, 0)✉

✬ ✩

✫ ✪

C-1(9)

SPATIO-TEMPORAL MODELING (II)

Field : Mapping on a Domain

Random Field a mapping from a Domain to earlier Variables
...the spatiotemporal generalization of random variable

Principal examples:
Time series are random fields over Z or R

Multispectral images: random fields over ×({1, . . . k}, Zn, Zn)
(spectral index does not support translation)

Neighborhood a Field from (Domain, Stencil) to a Domain
...maps (site, offset) �→ site′, often by translation
...supports adjacency for dependence structures

Let M be the neighborhood corresponding to the order-1 MRF
Then M(i, k) is the k-th neighbor of site i

M(i) is the set of all neighbors of site i

unpack operator
...returns the neighborhood M given a Domain and Stencil

✬ ✩

✫ ✪

C-2(10)

MODEL SPECIFICATION

• Simplest models have no conditional dependence:

D = Zn

(∀i ∈ D) x[i] ∼ Normal(i, 4)

• AR model:

D = Zn

S = −1
M = unpack(D, S)
(∀i ∈ D) x[i] ∼ Normal(x[M(i;−1)], 1)

• The standard Potts MRF prior:

D = ×(Zn, Zn)
S = {(−1, 0), (1, 0), (0, −1), (0, 1)}
M = unpack(D, S)
(∀i ∈ D) ct[i] =

∑
k∈M(i)

x[M(i; k)]

(∀i ∈ D) x[i] ∼ Discrete(0,
ect[i]−4

ect[i]−4 + e−ct[i] , 1,
e−ct[i]

ect[i]−4 + e−ct[i])

Import just enough mathematical notation to express the models

✬ ✩

✫ ✪

C-3(11)

WISH LIST

Basic Engine

Continuous integration

Prob operator for general DAGs using clique-tree algorithm

Usability

Natural editors
e.g., editing stochastic production rules as such

Style sheets for display over WWW

Language

Designing an expressive language is the central question

Declarative language may allow unintended power and features

✬ ✩

✫ ✪

D-1(12)

